0°

ChatGPT成功是因为美国AI不差钱?

  图片来源@视觉中国

  文|脑极体

  最近有个说法:ChatGPT这么成功的AI应用之所以诞生在美国,而非中国,是因为中国AI领域的企业急功近利,投资人竭泽而渔。

  类似结论有很多论据,比如中国投资圈看AI项目必要看场景和商业潜力,根本不看那些短期见不到回报的基础模型项目。中国AI企业,哪怕是大厂也异常重视商业化,刚做了个项目就迅速要求指向产业,指向营收。与之相反,ChatGPT则集成了OpenAI长期不计回报的研发思路,最终完成了厚积薄发。

  这样推论下来,中国AI在发展了若干年之后,依旧没有诞生明星技术,似乎大多是投资人与企业过分短视的锅。换言之,什么时候我们的企业和资本像美国AI圈一样不差钱,不爱钱,咱们的AI基础研究和核心技术才有出头之日。

  这个说法乍一听合情合理,证据充分,也非常契合今天舆论场中“内事不决赖资本”的话语习惯。

  但是,这真的经得起推敲吗?

  ChatGPT爆火,确实很让人羡慕。理解大家都很急,所以咱们先别急。如果在这种粗暴的“反思”之下,最终得出结论是不考虑商业回报,不计较个体得失,中国AI就会好起来。那或许才是真正走上了南辕北辙之路。

  因为这种占领道德制高点的逻辑,在出发点上就站不住脚,并且会遮蔽中国AI发展至今最闪亮的部分。

  OpenAI,乃至美国AI,真那么不计回报吗?

  最近我们都在听闻这样一种叙事:ChatGPT的诞生,是因为OpenAI这家公司敢于挑战伟大研究,不计回报,最终成功。

  但这个叙事线索可能从根本上就是有问题的。这个故事里,OpenAI是一群怀揣梦想的年轻人,为了改变世界聚集到一起。这里有个混淆因果的错误,不是OpenAI选择了伟大,而是投资人在创立、发起OpenAI这家科研实体的时候,定位就是只做具有巨大变革意义的研究。

  2015年,马斯克和他的朋友们发起OpenAI时,思路就是汇集全球最顶尖的AI人才,在非盈利的前提下,研发最具前沿性的AI技术。这个模式对标的更多是类似贝尔实验室这样能够产生巨大社会价值的半学术、半企业科研实体,直接竞争者则是这之前刚被谷歌收购的DeepMind。

  所以,不是OpenAI选择了底层技术研究,而是它本来就为AI底层技术而生。另一个需要注意的点是OpenAI这样的公司,本身就是特殊机缘下,融合了全球顶级富豪、顶级学者、海量舆论关注而诞生的明星企业。将这样企业的技术能力与具体某一家中国企业、投资机构进行对比,本身就有夸大后者责任的嫌疑。

  看到这里,或许有人会说。那OpenAI能成功,不还是不差钱,不考虑商业回报换来的吗?这点也有问题。因为到2019年,OpenAI就主动放弃了自己的非盈利属性,转头拥抱商业化。

  在当时,随着马斯克等一批先期投资者的退出,以及算力、数据、人才等支出越来越庞大。OpenAI开始愈发清晰认识到非盈利模式是难以持续的,于是随着山姆·阿尔特曼出任OpenAI的CEO,公司转型成为受限制营利实体(OpenAI LP),用限制利润上限,限制营收种类等方式,来探索在商业化与非盈利机构之间的新平衡点。

  这种“以商养研”的模式,目前来看是基本成功的。它一方面推动大量OpenAI的技术成果走向市场,以换取利润资助后续研究,形成正向的研发资金链。另外也敞开了OpenAI接受更多资助的大门,于是2019 年7月 OpenAI 接受了微软 10 亿美元的战略投资,代价之一就是OpenAI成为微软云计算领域的独家技术供应商。这也造就了几年后的今天,微软用ChatGPT把谷歌、META等老对手逼到了角落。

  这就不难看出,OpenAI并没有一些媒体说的那么“高冷”,反而它的发展轨迹,突显了一种“树挪死人挪活,办法总比困难多”的实用主义气质。如今,OpenAI已经可以实现超过3500万美元的年收入,这对于商业科技公司来说当然并不算多。但对于半盈利性质的科研实体来说,却解决了一大堆发展问题。从营收方法上看,OpenAI不仅与微软深度捆绑,源源不断获取微软投资,担任其技术供应商,还可以通过商业版订阅、API付费接入等模式,将旗下的众多产品变现,比如OpenAI的以文生图大模型DALL.E,就是很多AI画图软件的幕后支援。

  与OpenAI相对,它的老对手DeepMind在这一轮大语言模型的爆发中似乎有点沉默。这当然有很多原因,比如技术路线选择的问题,但有个问题是绝对拖延了DeepMind发展效率与技术布局能力的,那就是商业化。

  这几年,近乎每年都可以看到DeepMind连年亏损,导致谷歌不满的消息。其联合创始人公开表示过,如果当年不是谷歌收购,DeepMind应该已经破产了。奈何这些年风高浪急,地主家也少有余粮,由于DeepMind一直具有较高的独立性,并且更倾向于理想化、学术化的研究氛围,所以屡屡遭到谷歌的责难和怀疑,二者间产生了非常多矛盾。

  当然,随着OpenAI这轮大火,谷歌似乎也发现还是得靠DeepMind,所以最近又有关系回暖的倾向。但不管怎么说,商业化的缺陷并没有成为DeepMind一飞冲天的助力,反而变成了它不断受到母公司责难,研究进程放缓,甚至屡屡出现裁员、破产危机的发展障碍。

  可以说,DeepMind是那种“事都办漂亮了,钱一分没拿回家”的奇男子形象。但这种形象至少目前来看,没有带来成功,反而带来了外界对它的怀疑。

  但要补充一点,这里并没有看衰DeepMind的意思,它近几年的大量研究,真的非常具有突破性与想象力,等它找到了合适自己发展的快车道,下一个比肩AlphaGO和ChatGPT的现象级AI技术还得是它来做。希望我们到时候的反思,别又是美国AI不计回报……

  其实吧,中国AI领域有大把亏钱的项目。很多行业+AI解决方案,厂商做一个赔一个。无数博士走到工厂、农田,最后结算的费用可能连博士们的工资都不够。这种模式依旧在中国有序推进,至少证明了中国AI绝不完全等于急功近利。

  反过来说,美国AI企业和投资机构也爱钱,社会对新技术、科技企业的评判标准也是商业化是否成功。我们见过很多中国AI创业公司,即使营收困难,也能通过政府扶持、加入大厂产业生态、融入垂直行业等方式活下来。反而是大量美国AI公司挤在狭小赛道,也缺乏兜底支持,最终结局是昙花一现。

  换个角度看,也不是中国投资人更爱钱,美国投资人不爱钱。比如不久之前一所大学发布的数据报告称,2015年至2021年,来自美国的投资占中国AI企业融资总额的37%。如果数据无误,我们很难解释“不计回报”的美国投资人,怎么都来投资“掉钱眼”的中国企业了?

  追求商业回报,是企业与商业资本的天性与天职,绝没有任何错误。

  很多媒体与KOL,喜欢美化出一个“无用之用以为大用”的美妙叙事。因为这种故事有戏剧性,有反差感,也就有流量,同时也能迎合“中国科技不太行”的某种心理期待。

  醒醒吧。人家OpenAI不是没盘算商业化,只是盘算的更好一点。

「点点赞赏,手留余香」

    还没有人赞赏,快来当第一个赞赏的人吧!
0 条回复 A 作者 M 管理员
    所有的伟大,都源于一个勇敢的开始!
欢迎您,新朋友,感谢参与互动!欢迎您 {{author}},您在本站有{{commentsCount}}条评论