最近,ChatGPT已经成为了火爆全网的话题。ChatGPT是由人工智能实验室OpenAI发布的对话式大型语言模型,用户只需要在对话框里输入问题,就可以获得答案。据最新数据显示,在ChatGPT推出仅两个月后,它的月活用户已经突破了1亿,注册用户之多导致服务器一度爆满。
ChatGPT会带来颠覆性的突破吗?会有人因此而失业吗?在中欧管理学助理教授杨蔚看来,人工智能替代人力资本的终极条件,是真正能够实现自主的创新和决策。目前人们在某种程度上高估了ChatGPT的直接影响,它对现有商业和经济活动中的创新和决策流程,或许并没有想象中的替代性。
技术爆炸的“燃点”
人类仅用了几十个地球年,他们就进入了信息时代……从宇宙的时间尺度上看,这根本不是什么发展,是爆炸!技术飞跃的可能性是埋藏在每个文明内部的炸药,如果有内部或外部因素点燃了它,轰一下就炸开了!
——《三体:黑暗森林》
自当代信息技术诞生和发展的半个世纪以来,人类已经经历了数次重大的技术跨越和突破式创新,从芯片到个人电脑,从互联网技术到智能手机,但ChatGPT在2023年的火速出圈,速度之快、范围之广可以说是空前的。如果《三体》小说中所描述的“技术爆炸”有可能存在,那么ChatGPT的横空出世,似乎就是这样一个“内部因素”,无疑让世界感觉到:我们可能正在接近技术爆炸的“燃点”。
然而,从严格意义上讲,ChatGPT并不能算是真正意义上的技术突破,而是更类似于一次前沿技术的成功呈现和表达。其背后的人工智能技术,在计算机诞生伊始就开始被想象和探索,在21世纪最初的10年,开始真正酝酿并出现了突破性的发展。ChatGPT背后,其实是当代人工智能技术并不广为人知却波澜壮阔的发展历程。
令人意外的是,能够串联起人工智能技术突破的历史和ChatGPT故事的关键人物,是埃隆·马斯克。2010年,特斯拉刚刚研发了Model S,还在继续生产纯电动跑车Roadster,并将生产和销售扩大到了英国,推出了专门的右行驶版本。
不知是否出于巧合,此后不久,马斯克在英国以天使投资人的身份,投资了一家看上去不甚靠谱的人工智能初创公司——其仅有的一页网页上没有产品,没有商业计划,只有创始团队的联系方式,而其主要的创始人,仅仅是一个刚刚毕业且没有计算机背景的神经医学博士。2014年,在马斯克的撮合下,这家名为DeepMind的初创企业被谷歌收购,并在两年后推出了以4:1的成绩打败世界顶级围棋选手李世石的人工智能算法AlphaGo。马斯克之后颇为自豪地说,AlphaGo的压倒性胜利是跨时代的——赛前人们普遍预测,人工智能距离顶级围棋选手至少还有10年的距离。
实际上,AlphaGo诞生的背后,是此前十几年间人工智能算力、算法和数据的不断积累和飞速发展。这其中,有英伟达、AMD对于算力芯片的不断创新和突破,也有李飞飞等计算机科学家对于人工智能训练数据的大量投入,还有亚马逊众包平台上成千上万远程工人标注海量图像数据的努力,才使得深度神经网络和强化学习等当代人工智能的技术得以实现并快速迭代演化,并在短时间内迅速超越了人类的极限水平(注①)。而马斯克除了将人工智能在视觉识别领域的突破运用到特斯拉自动驾驶技术上,更多扮演的也许是一个眼光卓越且深谋远虑的天使投资人和宣传者的角色,在某种程度上催化了世人对这些技术突破的关注与了解。
2018年,基于AlphaGo的AlphaFold开始应用在蛋白质结构解析领域——解析蛋白质结构对于药物发现等领域都有基础性意义。在其后的四年,AlphaFold及其后的AlphaFold 2完成了98.5%的人类蛋白质结构、100万个物种的2.14亿个蛋白质结构预测(注②)。这样的速度和规模无疑是惊人的,因为在之前的五十年中,生物学家用实验的方法仅解析出17%的人类蛋白质结构,且使用的冷冻电镜成本十分高昂。参与解析工作的James Wang曾在推特上透露,AlphaFold的解析成本,大概是一辆丰田凯美瑞的价钱。
这样惊人的速度和低廉的研究成本,对于蛋白质结构解析这一生物学的重要领域,无疑是颠覆式的,AlphaFold在短时间内取代并完成了传统生物学蛋白质结构解析的工作,从某种程度上说,终结了这一领域很大一部分研究工作的意义。出人意料的是,科学家对人工智能这种“颠覆”乃至“终结”式的贡献颇为激动和欢迎,作为这一领域的泰斗,施一公曾评价AlphaFold是“人工智能对科学领域最大的一次贡献”,将科学家从繁杂的蛋白质结构解析工作中解放出来,进行更为深入的研究和探索。
值得注意的是,无论是AlphaFold的算法还是其研究成果都是完全免费且全部开源的,科学家可以随意调取使用,唯一的附加条件,是同样需要把在此基础上进行的研究成果公之于众。这样加速式的知识创造与积累方式,或许也已经将世界快速引向了“技术爆炸”的燃点。
回到2015年,AlphaGo名噪一时的前夕,马斯克还参与创立了一个致力于发展人工智能的非营利性机构——OpenAI,也就是ChatGPT的创造者。马斯克声称,他建立OpenAI的初衷是防止人工智能的负面影响(注③)。这个初衷却无法解释OpenAI的战略选择——与AlphaGo的侧重点不同,OpenAI主攻的是自然语言训练模型——这是当时人工智能领域最具挑战性的难点之一。
从原理上,自然语言训练的难点来自人类的语言本身并不是客观的,而是根据情景、文化和人类认知局限高度变化的,这与视觉识别等其他人工智能和机器学习领域能够依赖相对客观的参照标准形成很大的反差。自然语言识别的成功训练,需要人工智能能够学会人类的思维方式和表达方式,这样的先决条件,不仅是极大的技术挑战,也是现在ChatGPT引发争议的根本原因所在。
然而,OpenAI和ChatGPT解决自然语言技术难点的方法,并没有展现出突破性的新意,而是在思路上沿袭了目前已经相当成熟的强化学习和神经网络框架,通过语言语料的处理和堆积让算法识别出语言的规律。ChatGPT背后的GPT3模型依赖于其通过互联网和书籍文本汇总所生成的1750亿个参数,这使得ChatGPT从本质上更多的是基于现有机器学习算法的算力挑战,而不是真正意义上的重大技术突破。
2018年,在AlphaFold推出的同年,马斯克也与OpenAI分道扬镳。很快OpenAI脱去了非营利组织的标签,成为以营利为目的的人工智能研究机构。如果没有这次分离,2023年的世界是否还能有机会体验ChatGPT及其引发的疯狂,就不得而知了。
在收到这篇约稿之后的几天,我一直试图登录这个令世界瞩目的聊天机器人,却几次被告知程序“at capacity”(“满负荷”),无法进入。这颇有些讽刺意味——谁也没有想到,一个基于所有当下文明产生的文字语言精华所训练的人工智能程序,仍然不能承载人类全部的好奇心和探索欲。而ChatGPT背后,“颠覆”性的变革和突破或许早已开始。